Given: A circle with chords AB and CD.

Prove: $AB = CD$.

Proof:

1. Draw radii AE and CE.
2. Since E is on the circle, $AE = CE$ (radii of the same circle are equal).
3. EA and EC are tangents from the same point E.
4. Therefore, $EA = EC$.
5. Thus, $AB = CD$.

Section B

EA and EC are tangents from outside point E.

$EA = EC$. (1) Length of tangents from a point to a circle are equal.
Proof:

AF = AB \ (1) \ \text{length of tangents from an external point to the circle are equal}

BF = BD \ \text{length of tangents from an external point to the circle are equal}

CD = EC \ (2) \ \text{length of tangents from an external point to the circle are equal}

AB = AC \ (3) \ \text{since } AEC \text{ is a straight line}

AFBF = AE + EC \ \text{as given}

BP = EC \ \text{since } AF = AB

BD = CD \ \text{from (2) and (3)}

(1) Every number occurs in \(2, 2) (2, 4) (3, 6) (4, 2) (4, 4) (4, 6) (6, 2) (6, 4) (6, 4)

\(P \) (number of events is even) = \(\frac{9}{36} = \frac{1}{4} \)

(1) Some of outcomes are \((1, 4) (2, 3) (3, 2) (4, 1)\)
12. \(V \text{ of hemisphere} = \frac{4}{3} \pi r^3 \\
3 \pi r^2 = 462 \)
\[8 \times 5.7 \times r^2 = 462 \]
\[2 \times 49 \]
\[r = 7 \]
\[\text{Radius of hemisphere} = \frac{2}{3} \pi r^2 \]
\[= \frac{2}{3} \times \frac{22}{7} \times 49 \times 7 \]
\[= 2156/3 \]

13. The sequence goes like this,
 110, 120, 130, ..., 990
since they have a common difference of
 10. Every term can be written as
 \[a = 110, \quad a_n = 990, \quad d = 10 \]
 \[a_n = a + (n-1)d \]
 \[990 = 110 + (n-1) \times 10 \]
 \[980 = (n-1) \times 10 \]
 \[98 = (n-1) \times 10 \]
There are 89 terms between 101 and 999 divisible by 8 and 9.

\[a = 9, \quad b = -3k, \quad c = k \]

Since roots of the equation are equal,

\[b^2 - 4ac = 0 \]

\[(3k)^2 - (4 \times 9 \times k) = 0 \]

\[9k^2 - 36k = 0 \]

\[k^2 - 4k = 0 \]

\[k(k - 4) = 0 \]

\[k = 0 \quad \text{or} \quad k = 4 \]

Since k = 0 is not possible for the equation, \(k = 4 \).

\[\angle AED = 60^\circ, \quad \angle BEC = 90^\circ \]

\[AD = BC = 3000 \sqrt{3} \text{ m} \]

\[\text{Let the speed of the } \]
\[\text{aeroplane } x \times m/s \]
\[BE = \text{ recom } DE = 30 \times X \]
\[= 30 \times x \text{m} \]
\[\text{(1)} \]

\[\triangle ABE : \text{right angled} \]
\[\tan 60^\circ = \frac{AD}{DE} \]
\[\sqrt{3} = \frac{3000 \sqrt{3}}{DE} \]
\[DE = 3000 \text{m} \]
\[\text{(2)} \]

\[\triangle DEC : \text{right angled} \]
\[\tan 30^\circ = \frac{EC}{DE} \]
\[\frac{1}{\sqrt{3}} = \frac{2000 \sqrt{3}}{DE} \]
\[DE + CD = 3000 \text{m} \]
\[3000 + 30x = 9000 \]
\[x = 200 \text{ m/s} \]
\[\text{speed of plane is } 200 \text{ m/s} \]
14. side of cube, \(a = 7 \) cm

The diameter of the largest possible sphere is 7 cm. I assume as well of cube.

\[
\text{Radius} = \frac{7}{2} \times 10^{-2}
\]

Volume of the wood left = Volume of cube - Volume of sphere

\[
\begin{align*}
\text{Volume of sphere} &= \frac{4}{3} \pi \left(\frac{7}{2} \times 10^{-2}\right)^3 \\
&= \frac{4}{3} \pi \left(\frac{7}{2} \times 10^{-2}\right)^3 \\
&= \frac{4}{3} \pi \left(\frac{49}{16} \times 10^{-6}\right) \\
&= \frac{490}{48} \times 10^{-3}
\end{align*}
\]

15. Width of canal = 6 m

Height of canal = 1.5 m

Length of canal is canal in 1 h = 4 km = 4000 m

Let the Base area of field be \(x \) m²

The height of standing water in the field = \(\frac{8}{100} \) m
Volume of caeder in caerol in 10 minutes is \(\frac{1}{2} \) hour.

\[
\begin{align*}
\text{Volume of caeder in field} &= \frac{1}{2} \\
&= \frac{3.6 \times 3.5 \times 4000}{100} \\
&= \frac{3.6 \times 3.5 \times 4000}{100} \\
&= \frac{18 \times 50 \times 4000}{100} \\
&= \frac{720000}{100} \\
&= \boxed{720000} \text{ m}^3
\end{align*}
\]

10. Area of trapezium = \(24.5 \) m²

\[
\begin{align*}
l \left(\frac{a+b}{2} \right) &= 24.5 \\
l \left(\frac{10+4}{2} \right) &= 24.5 \\
2l &= 24.5 \\
l &= \frac{24.5}{2} \\
l &= 10.25 \text{ cm}
\end{align*}
\]

\[
AB + AD = \text{given}
\]

1. \(AB \) is the length of the trapezium

\[
L = AB \times 3 \text{ cm}
\]

6. Rod AB is the radius of the quadrant.
Area of the shaded region

\[\text{Area of quadrants} \]

\[= \frac{34.5}{2} \times \frac{11}{3} + 6 \]

\[= 34.5 \times 3.5 \]

\[= 120.75 \]

\[\frac{40 - 19.75}{2} \]

\[= 20.125 \]

\[\frac{39.75}{2} \]

\[\frac{39.75}{2} \]

17. \(A(3,-3) \) and \(B(-3,7) \)

on the x-axis, the y-coordinate is zero.

so, let the point be \((x,0)\)

Let the ratio be \(k:1 \)

\[\frac{x - 3}{-3 - 3} = \frac{-2k + 3}{k + 1} \]

\[7k - 3 = 0 \]

\[k = \frac{3}{7} \]
\[
\begin{align*}
-2 + \frac{1}{3} &= x \\
\frac{7}{3} &= x \\
-2 \times 3 \frac{1}{2} + 7 &= x \\
\frac{6}{5} + \frac{3}{10} &= x \\
6 + 21 &= x \\
\frac{17}{4} &= x \\
\frac{19}{4} &= x \\
\frac{15}{7} &= x \\
\frac{16}{7} &= x \\
2x &= \frac{3}{2}
\end{align*}
\]

The coordinates of the point is \((\frac{3}{2}, 10)\)

20. Area of the shaded region = Area of major sector \(AOC\) - Area of minor sector \(AOB\)
\[\Rightarrow \frac{360 \cdot 60}{360} \times \frac{1}{3} \times 4 \times 42 - 360 \cdot 60 \times \frac{1}{3} \times x^2 \times x \times 21 \]

\[\Rightarrow \frac{300 \times 62}{340} \times \frac{1}{3} \times \frac{1}{4} \times 2 \times 3 \times 21 \]

\[\Rightarrow 3465 \times 10^3 \]

\[\frac{16}{x} - 1 = \frac{15}{x + 1} \]

\[\frac{15}{x} - \frac{15}{x + 1} \]

\[16(x + 1) - 15x = x^2 + x \]

\[16x + 16 - 15x = x^2 + x \]

\[3x^2 + x^2 = 21 \]

\[x^2 - 16 = 0 \]

\[(x + 4)(x - 4) = 0 \]

\[x + 4 = 0, \ x - 4 = 0 \]

\[x = -4, \ x = 4 \]

\[a_2 + a_7 = 30 \]
\[a + 6d = 30 \]
\[3a + 7d = 30 \] \(\cdots (1) \)

\[(2 \times 9)^2 = 9 \]
\[(2 \times \frac{a+7d}{2})^2 = a + 14d \]
\[(2a + 14d)^2 = a + 14d \]
\[2a - 14d - 1 = a + 14d \]
\[2a - a = 1 \]

Substitute \(a = 1 \)
\[3a + 7d = 30 \]

\[2x + 14d = 30 \]
\[7d = 28 \]
\[d = 4 \]

The A.P is 1, 5, 9, 13, 17 ...
Step 1: Construct a line segment AB of 8 cm length.
Step 2: With A as centre, draw a circle of radius 8 cm.
Step 3: With B as centre draw a circle of radius r.

Step 4: Draw a perpendicular bisector of AB and let it intersect AB at X.

Step 5: With X as centre and XA as radius, draw a circle.

Step 6: Let this circle intersect the circle with centre A at P and Q and the circle with B as centre at R and S respectively.

Step 7: Join AR, AS, BP and BQ.

AR, AS, BP and BQ are the required tangents.
24. \[AC = \sqrt{(8 - 2)^2 + (6 - 1)^2} \]
\[= \sqrt{3^2 + 7^2} \]
\[= \sqrt{9 + 49} \]
\[= \sqrt{58} \]

\[BD = \sqrt{(8 - 2)^2 + (1 - 6)^2} \]
\[= \sqrt{3^2 + 7^2} \]
\[= \sqrt{9 + 49} \]
\[= \sqrt{58} \]

Since \[AC = BD = \sqrt{58} \text{ cm} \], the diagonals of \(ABCD \) are equal.

\[A(2, 1) \quad B(5, 1) \quad D(2, 6) \quad C(5, 6) \]

Midpoint of \(AC \) = \(\left(\frac{3}{2}, \frac{7}{2} \right) \)

Midpoint of \(BD \) = \(\left(\frac{1}{2}, \frac{3}{2} \right) \)

Since the midpoint of diagonal \(AC \) = midpoint of
diagonal $BD = \left(\frac{1}{2}, \frac{5}{4} \right)$, which bisect each other.

SECTION D

Given: AB is a tangent to circle with center O.

To prove: AB is the longest tangent.

Proof:

1. $OC = OP = OD$ (radii of circle)

2. $OC + CT > OP$...

3. $OD = OP$

4. $OD + PR > OP$...

From (1) and (2), we can understand that OP is the shortest than any distance drawn.
21. Height of tower, \(h = 24 \text{cm} \)

\[x_1 = 8 \text{cm} \]

\[x_2 = 8 \text{cm} \]

Volume of container = \(\frac{1}{3} \times 8 \times 8 \times \left(\frac{20 + 20 + 60 + 60}{3} \right) \times 24 \)

\[= \frac{1}{3} \times 8 \times 8 \times \left(\frac{160 + 60 + 60}{3} \right) \times 24 \]

\[= \frac{1}{3} \times 8 \times 8 \times \left(\frac{24 \times 24 \times 3}{1000} \right) \]

\[= 21.6 \times 624 \times 3 \times \frac{1}{1000} \text{ litres} \]

Total cost = \(\frac{21.6 \times 624 \times 3}{1000} \times 100 \text{ Rs} \)

\[= \frac{21.6 \times 624 \times 3}{1000} \times 100 \text{ Rs} \]

\[= 229.47 \text{ Rs} \]

\[\text{Ro 331.5 approximately} \]

28. Height of flagstaff = \(CD = 4 \text{m} \)

Height of tower = \(BD = 8 \text{m} \)

\(\angle DAB = 45^\circ \), \(\angle CAB = 60^\circ \)

\(AB = 120 \text{m} \)
\[\triangle ABD \text{ is right-angled} \]

\[\tan 45^\circ = 1 \]

\[\frac{x}{AB} \]

\[x = AB = 120 \text{ m} \]

\[\triangle ACB \text{ is right-angled} \]

\[\tan 60^\circ = \sqrt{3} \]

\[\frac{h+x}{120} \]

\[h + 120 = 120 \sqrt{3} \]

\[h = 120 \sqrt{3} - 120 \]

\[h = 120 \left(\sqrt{3} - 1 \right) \]

\[h = 120 \left(1.73 - 1 \right) \]

\[h = 120 \times 0.73 \]

\[h = 87.6 \text{ m} \]

89. Let the speed of stream = \(x \) km/h.

Then the speed of boat in upstream = \((15 - x)\) km/h.

Speed of boat in downstream = \((15 + x)\) km/h.
According to the question,

\[24 = 24 \]

\[\frac{24}{15-X} \]

\[24 (15+X) - 24 (15-X) = 1 \]

\[15^2 - x^2 \]

\[432 + 21x - 432 + 14x = 324 - x^2 \]

\[21x = 324 - x^2 \]

\[x^2 + 34x - 314 = 0 \]

\[x^2 + 51x - 6x - 3x^2 = 0 \]

\[x (x+51) - 6 (x+54) = 0 \]

\[(x+51) (x-6) = 0 \]

\[x+51 = 0 \quad x-6 = 0 \]

\[x = -51, x = 6 \]

The speed cannot be negative.

The speed at shore is 6 kn/h.

The sequence of numbers is

\[2 \quad 3 \quad 1 \quad 2 \quad 12 \]

\[3 \quad 1 \quad 2 \quad 12 \]

\[3, 1, 2, 12 \]
30. The sequence of trees goes like this:

4, 8, 12, ... 48

They form an A.P. with common difference 4.

The total number of trees planted by students 1 to 12 is given by

\[S_n = \frac{n}{2} \times (a + l) \]

where \(n = 12, \ a = 4, \ l = 48 \)

\[S_{13} = \frac{12}{2} \times (4 + 48) \]

\[= 6 \times 52 = 312 \]
The value of environmental conservation is shown by the students.

\[\frac{x-3}{x-4} + \frac{x-5}{x-6} = \frac{10}{3} \]

\[\frac{(x-3)(x-6) + (x-4)(x-5)}{(x-4)(x-6)} = \frac{10}{3} \]

\[\Rightarrow x^2 - 9x + 18 + x^2 - 9x + 20 = 10 \]

\[x^2 - 10x + 28 \]

\[= 3(3x^2 - 18x + 38) = 3(10x^2 - 100x + 240) \]

\[= (-x^2 - 54x + 180) = 103x^2 - 100x + 240 \]

\[= x^2 - 48x + 26 = 0 \]

\[= 2x^2 - 23x + 12 = 0 \]

\[= (2x-9)(x-7) = 0 \]

\[\Rightarrow 2x-9 = 0, x-7 = 0 \]

\[\Rightarrow x = 9/2, x = 7 \]
32. 1) No. of cards remaining = 52 - 2x2
 = 52 - 4 = 48

 No. of red cards = 26 - 6 = 20
 P (red colour) = 20/48 = 5/12

 ii) No. of queens = 4 x 2
 P (a queen) = 8/48 = 1/6

 iii) No. of ace = 4
 P (any ace) = 4/48 = 1/12

 iv) No. of face cards: 12 - 6 = 6
 P (a face card) = 6/48 = 1/8

33. AD is the median of \(\triangle ABC \) (given) \\

vertex A

\[D(x, y) = \left(\frac{3+6}{2}, \frac{-2+2}{2} \right) = (4, 0) \]
\[\text{Area of } \triangle ADB = \frac{1}{2} \times (3 \times (0 + 1)) + 4 \times (-2 + 6) + 3 \times (-6 + 1) \]
\[= \frac{1}{2} \times (3 + 12 - 18) \]
\[= \frac{1}{2} \times 3 = \text{3 square units} \] \(\text{(1)} \)

\[\text{Area of } \triangle ACB = \frac{1}{2} \times (4 \times (0 - 2) + 4 \times (3 + 6) + 3 \times (-6 + 1)) \]
\[= \frac{1}{2} \times (-8 + 32 - 30) \]
\[= \frac{1}{2} \times -6 = -3 \]

Since area is positive,
\[\text{Area of } \triangle ACB = 3 \text{ square units} \] \(\text{(2)} \)

From (1) and (2) Area of \(\triangle ADB \) = Area of \(\triangle ACB \)

It is verified that joining \(\triangle ADB \) divides \(\triangle ABC \) into \(\triangle 100 \) triangles of equal areas.

34. Given: A circle with centre \(O \)

is inscribed in a quadrilateral \(ABCD \)

is \(\triangle AED \) and \(\triangle AFO \).

\(OE = OF \) (radii of circle)

\(\angle AFO = \angle CFA = 90^\circ \) (radii of circle)
perpendicular to the line through the point of contact is perpendicular to this tangent.

\[\angle A = \angle A \text{ (corresponding sides)} \]

\[\triangle AEO \cong \triangle AFO \text{ (RHS rule)} \]

\[\angle 1 = \angle 3 \]

\[\angle 2 = \angle 4 \]

\[\angle 5 = \angle 6 \]

Similarly,

\[\angle 1 = \angle 3 \]

\[\angle 2 + \angle 4 \]

\[\angle 5 + \angle 6 \]

\[\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^\circ \]

\[\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^\circ \]

\[\angle 1 \angle 2 \angle 3 \angle 4 = 180^\circ \]

\[\angle AOB + \angle DOC = 180^\circ \]

It is proved that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre.